Deposition of boron doped DLC films on TiNb and characterization of their mechanical properties and blood compatibility

نویسندگان

  • Shahira Liza
  • Junko Hieda
  • Hiroki Akasaka
  • Naoto Ohtake
  • Yusuke Tsutsumi
  • Akiko Nagai
  • Takao Hanawa
چکیده

Diamond-like carbon (DLC) material is used in blood contacting devices as the surface coating material because of the antithrombogenicity behavior which helps to inhibit platelet adhesion and activation. In this study, DLC films were doped with boron during pulsed plasma chemical vapor deposition (CVD) to improve the blood compatibility. The ratio of boron to carbon (B/C) was varied from 0 to 0.4 in the film by adjusting the flow rate of trimethylboron and acetylene. Tribological tests indicated that boron doping with a low B/C ratio of 0.03 is beneficial for reducing friction (μ = 0.1), lowering hardness and slightly increasing wear rate compared to undoped DLC films. The B/C ratio in the film of 0.03 and 0.4 exhibited highly hydrophilic surface owing to their high wettability and high surface energy. An in vitro platelet adhesion experiment was conducted to compare the blood compatibility of TiNb substrates before and after coating with undoped and boron doped DLC. Films with highly hydrophilic surface enhanced the blood compatibility of TiNb, and the best results were obtained for DLC with the B/C ratio of 0.03. Boron doped DLC films are promising surface coatings for blood contacting devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Room-Temperature Deposition of DLC Films by an Ion Beam Method, Reactive Magnetron Sputtering and Pulsed Laser Deposition: Process Design, Film Structure and Film Properties

Structural and mechanical properties of diamond-like carbon films deposited by an anode layer source, Thin Solid Films 517 (2009) 6502. spectroscopy of diamond-like carbon films deposited by an anode layer source, Diamond Relat. Mater. 17 DLC films deposited at room-temperature by reactive magnetron sputtering and by an anode layer source – a comparative study, Relation between structural/topol...

متن کامل

Nitrogen and Aluminum Doped Diamond-like Carbon Thin Films by Dc Magnetron Sputtering Deposition

Diamond-like carbon (DLC) thin films used in this study were prepared with DC magnetron sputtering deposition. Silicon (100) wafers were used as the substrates onto which an RF bias was applied during the film deposition. For the nitrogen doped DLC films, a pure graphite target was used as the carbon source and nitrogen gas was introduced into the deposition chamber via a mass flow controller. ...

متن کامل

Hemocompatibility of nitrogen-doped, hydrogen-free diamond-like carbon prepared by nitrogen plasma immersion ion implantation-deposition.

Amorphous hydrogenated carbon (a-C:H) has been shown to be a potential material in biomedical devices such as artificial heart valves, bone implants, and so on because of its chemical inertness, low coefficient of friction, high wear resistance, and good biocompatibility. However, the biomedical characteristics such as blood compatibility of doped hydrogen-free diamond-like carbon (DLC) have no...

متن کامل

Effect of Platinum and Ruthenium Incorporation on Voltammetric Behavior of Nitrogen Doped Diamond-Like Carbon Thin Films

Nitrogen doped diamond-like carbon thin films with or without platinum and ruthenium incorporation (N-DLC or PtRuN-DLC) were deposited on highly conductive p-Si substrates by DC magnetron sputtering to study the effect of Pt and Ru doping on the voltammetric performance of the N-DLC films. The potential windows of these film electrodes were measured in different electrolytic solutions, such as ...

متن کامل

Surface Characterization and Blood Compatibility of Diamond-Like Carbon (DLC) Films on the NiTi Alloys

Diamond-like carbon (DLC) films are fabricated on the NiTi alloys at room temperature using plasma immersion ion implantation and deposition (PIIID). The effects of the substrate bias on the characteristics of the DLC films are systematically examined to correlate to the blood compatibility. The results show both the ID=IG ratio (inverse trend in the sp =sp ratio) and the G peak position first ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017